
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

A Trace-Based Proof Technique
for Secure Compilation

Extended Abstract

Jérémy Thibault
Inria Paris

jeremy.thibault@inria.fr

Introduction
Good programming languages provide many useful abstrac-
tions, such as type or memory safety, or modules and in-
terfaces, that can be used to achieve security. However, the
security properties of a source program are not necessarily
preserved when compiling it to a low-level language and
linking it to adversarial code (a library, for instance). Indeed,
this low-level code do not benefit from the source abstrac-
tions, and can behave in an unexpected manner. For instance,
it can violate memory safety by accessing arbitrary memory
locations, or pass ill-typed values to the program.
One of the goal of secure compilation is protecting com-

piled code from arbitrary low-level context. Traditionally,
a compilation chain is proven secure by proving that it is
fully abstract [1]: it preserves (and reflects) observational
equivalence.
Recent work [3] suggested using different criteria, based

on the preservation of the satisfaction of properties against
adversarial contexts.
We describe one of these criteria, the robust preservation

of finite-relational safety properties, and show that a simple
compiler, between a statically typed, while language with
first-order functions and its dynamically typed counterpart,
satisfies this criterion. Our proof, centered around the back-
translation of a finite set of finite prefixes of traces into a
source context, is an adaptation of existing proof techniques
for proving full abstraction.

Fully Abstract Compilation
Secure compilation is often stated as fully abstract compila-
tion [1]: a fully abstract compiler is a compiler that preserves
and reflects observational equivalence, where observational
equivalence is instantiated with contextual equivalence. A
compiler ↓ is fully abstract if:

∀P1P2, (∀CS ,CS [P1] ≈ CS [P2]) ⇐⇒ (FA)
(∀CT ,CT [P1↓] ≈ CT [P2↓])

where source and target programs or contexts are indexed
by S or T , and C [P] denotes the linking of program P with
context C .

However, achieving and proving a compiler fully abstract
is often a very difficult task [5], and the security properties

preserved by such a compiler are often hard to describe [2,
3, 6, 7].
To prove full abstraction, and in particular the security-

relevant direction, i.e., the preservation of contextual equiv-
alence (left-to-right), several proof techniques have been
proposed and used, such as universal embedding [4]. Most
of these proofs have in common the fact that they rely on
backtranslating a distinguishing target context into a distin-
guishing source context, using the contrapositive of (FA).
The source context produced this way aims at emulating the
behavior of the target one.

Robust Property Preservation
The various criteria described in [3] are criteria based on
the idea of preserving the satisfaction of properties or class
of properties, defined over traces, against any adversarial
context.
Indeed, instead of focusing on preserving observational

equivalence, one might be interested in only preserving
classes of properties that are security-relevant, such as safety,
liveness, or hyperproperties. These classes are particularly
relevant to security: indeed, they include number of well-
studied properties, such as noninterference, which is a safety
hyperproperty.
Full abstraction do not imply the preservation of these

classes. Moreover, the kind of protections needed for full
abstraction might be too powerful if one is only interested
in preserving particular classes of properties. For instance, a
fully abstract compilation chain has to preserve the equiv-
alence of programs; meanwhile, a compilation chain that
preserves safety properties might only have to protect some
internal invariants.
We say that a (partial) program robustly satisfies a prop-

erty if it satisfies this property when linked against any con-
text. Then, the role of a compiler that robustly preserves a
class of property is to ensure that any of these properties that
is robustly satisfied by a program at the source level is also
robustly satisfied by the same program, after compilation.
An alternative, “property-free” criterion, more suited for

proofs, can be given for each of these criteria, in the sameway
as the contrapositive of full abstraction. Take, for instance,

1



Jérémy Thibault

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

the following criterion called Robust Safety Preservation:

∀π ∈ Safety,∀P, (RSP)
(∀CS ,∀t,CS [P] { t =⇒ t ∈ π ) =⇒

(∀CT ,∀t,CT [P↓] { t =⇒ t ∈ π )

where π is a safety property. This criterion states that the
compiler preserves the robust satisfaction of the safety prop-
erties. An equivalent way of stating it is:

∀P,∀m,∀CT ,CT [P↓] { m =⇒ (RSC)
∃CS ,CS [P] { m

wherem are finite prefixes. This characterization captures
the fact that if a bad prefix invalidates a safety property at
the target level, then the same prefix can be found at the
source level.

Contribution
Compiler and Languages
We consider a source language that is a simple statically
typed while language, with first-order functions. We com-
pile it to the same language, except it is dynamically typed
instead, with the help of two commands that check the type
of a given expression. We restrict the languages, so that the
context is initially in control, and performs a sequence of
calls to functions from the program (possibly branching on
returns). Finally, the traces are made of inputs and outputs
to an external environment, and potentially a termination
event.
The compiler’s role is to introduce dynamic type checks

in every function, to ensure that a function can only be
called with an argument of the correct type. Otherwise, the
compiler makes the function fail.

Robust Finite-Relational Safety Preservation
Wedefine the criterionwe call Robust Finite-Relational Safety
Preservation. In short, this criterion states that the safety
properties (that can be refuted by finite bad prefixes) that
relates several partial programs (and traces) together are
preserved by compilation:

∀k,∀R,∀P1 . . . Pk , (RFin-rSP)
(∀CS ,∀t1 . . . tk ,CS [P1] { t1 ∧ · · · ∧CS [Pk ] { tk

=⇒ (t1, . . . , tk ) ∈ R) =⇒

(∀CT ,∀t1 . . . tk ,CT [P1↓] { t1 ∧ · · · ∧CT [Pk↓] { tk

=⇒ (t1, . . . , tk ) ∈ R)

where R is a safety relation of arity k .
The criterion is equivalent to the following contrapositive

form, where them are finite prefixes of traces.

∀k,∀P1 . . . Pk ,∀CT ,∀m1 . . .mk , (RFin-rSC)
(CT [P1↓] { m1 ∧ · · · ∧CT [Pk↓] { mk ) =⇒

∃CS , (CS [P1] { m1 ∧ · · · ∧CS [Pk ] { mk )

We can now use a proof technique inspired by proofs
techniques used for full abstraction, to prove this result.

We consider k programs, and k finite prefixes produced by
the compiled programs linked with the same context. From
this set of prefixes, we construct a source context. When
linked with this context, the source programs can produce
the same set of finite prefixes, hence achieving the criterion.

The proof proceeds as follow:
• First, we instrument the semantics to allow the traces
to keep track of more information. Indeed, the simple
traces considered that only contain input and outputs
do not carry enough information to backtranslate. In
particular, they carry no information about the control-
flow of the whole program. The informative traces we
consider then also track the calls and the returns

• Then, we only consider the parts of the prefixes that
can be blamed on the context, as they are the only
parts relevant to the backtranslation

• We exploit the fact that the single context handles the
control-flow of the whole program by calling func-
tions from the partial programs. Hence, we identify a
branching structure in the informative traces, that we
reproduce in a single source context.

Our proof technique also highlights the fact that it is im-
portant that we can not blame failure on either the program
or the context. Indeed, the backtranslated context needs to
preemptively cause a failure when a target program would
fail due to a type error; that is, a failure might be shifted
from the program to the context, when going from target to
source.

Future Work
This work is still in progress. We plan on improving the proof
technique, to be able to solve several limitations the current
compilation chain has. First and foremost, it is necessary to
allow callbacks from the program to the context, in order to
model a more faithful interaction between the two. Then, an
extension to higher-order function seems natural.

On another direction, we will continue to study these cri-
teria, and their relation with full abstraction in particular.
We know that the criterion described here implies full ab-
straction in certain conditions, but we might wonder under
what conditions full abstraction imply our criterion, or at
least weaker ones.
Finally, we plan on studying other proof techniques, and

compare them in terms of complexity, extensibility, and
power.

References
[1] M. Abadi. Protection in programming-language translations. In Security

Issues for Mobile and Distributed Objects. 1999.
[2] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini,

C. Hriţcu, T. Laurent, B. C. Pierce, M. Stronati, and A. Tolmach. When
good components go bad: Formally secure compilation despite dynamic

2

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-154.pdf
https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1802.00588


166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

A Trace-Based Proof Technique
for Secure Compilation

compromise. In 25th ACM Conference on Computer and Communications
Security (CCS). 2018.

[3] C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, and J. Thibault.
Journey beyond full abstraction: Exploring robust property preservation
for secure compilation. arXiv:1807.04603, 2018.

[4] M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation via
universal embedding. In 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP, 2016.

[5] M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches to secure
compilation: A survey of fully abstract compilation and related work.
ACM Computing Surveys, 2019.

[6] M. Patrignani and D. Garg. Secure compilation and hyperproperty
preservation. In 30th IEEE Computer Security Foundations Symposium,
CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. 2017.

[7] M. Patrignani and D. Garg. Robustly safe compilation. CoRR,
abs/1804.00489, 2018.

Submission information
Advisor: Cătălin Hriţcu, Inria Paris
ACM student member number: 0021536
Category: Graduate

3

https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
https://www.williamjbowman.com/resources/fabcc-paper.pdf
https://www.williamjbowman.com/resources/fabcc-paper.pdf
http://theory.stanford.edu/~mp/mp/Publications_files/main-full.pdf
http://theory.stanford.edu/~mp/mp/Publications_files/main-full.pdf
https://doi.org/10.1109/CSF.2017.13
https://doi.org/10.1109/CSF.2017.13
http://arxiv.org/abs/1804.00489

	References

