
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Nanopass Back-Translation of Multiple Traces for
Secure Compilation Proofs

Jérémy Thibault
MPI-SP

Cătălin Hriţcu
MPI-SP

Abstract. Many secure compilation chains aim at ensuring that if there
is no attack a source context can mount against a source program then
there is no attack an adversarial target context can mount against the
compiled program. One may, for instance, try to prevent attacks against
trace properties (e.g., safety), hyperproperties (e.g., noninterference), or
relational hyperproperties (e.g., observational equivalence).

Proving that these compilation chains are secure is, however, challenging.
For any target attack one has to exhibit a source context mounting the same
attack against the source program. Such back-translations can be highly
complex, especially for hyperproperties and relational hyperproperties.

We describe a novel back-translation technique that results in simpler
proofs, which can be more easily mechanized in a proof assistant like Coq.
Given any number of finite trace prefixes, our back-translation builds a
single source context producing these prefixes. We see the finite set of trace
prefixes as a tree of events, and use state in the back-translated context
to record the current position in this tree. The back-translation is done
in many small steps, each adding to the tree new information describing
how the location should change depending on how the context regains
control. To prove such a back-translation correct we give semantics to every
intermediate tree language and prove many small forward simulations,
basically seeing the back-translation as a verified nanopass compiler.

This technique allows us to prove in Coq a strong secure compilation
criterion for an existing simple compilation chain that was previously only
proved to satisfy a weaker criterion.

Introduction. Modern languages provide useful abstrac-
tions for programming securely, such as modules and in-
terfaces. However, compiling and linking with untrusted
low-level code (for instance, a library) doesn’t necessarily
preserve the security properties of the high-level program.
Indeed, such low-level code doesn’t have to respect the same
abstractions, and could actively attack the compiled program.
The main goal of a secure compilation chain is to protect
compiled code from such adversarial low-level code.
Abate et al. [1] recently introduced a range of security

criteria based on the preservation of classes of trace hyper-
properties against adversarial contexts. Achieving security
for a realistic compiler is difficult though; and yet more dif-
ficult is proving that such a compiler is indeed secure. Yet,
Abate et al. [2] showed that (a variant of) one of the weakest
criteria from [1], called RSC, is amenable to formal verifica-
tion in Coq, by proving the security of a compartmentalizing
compiler for a small C-like language.
This and most other secure compilation proofs rely on

back-translation [3, 6]: given a target context, and possibly
more information such as execution traces of this target con-
text, one must build a source context that “behaves like” the
target context. We propose a technique for back-translating
a finite set of finite trace prefixes into a single source context,
and a convenient way to prove its correctness. It can be used

to prove one of the stronger criteria of Abate et al. [1]:

RFrXC : ∀𝐾 ∀𝑃1 . . . 𝑃𝐾 𝐶𝑇 𝑚1 . . .𝑚𝐾 .

(𝐶𝑇 [𝑃1↓] ⇝𝑚1 ∧ . . . ∧ 𝐶𝑇 [𝑃𝐾↓] ⇝𝑚𝐾 ) ⇒
∃𝐶𝑆 . (𝐶𝑆 [𝑃1] ⇝𝑚1 ∧ . . . ∧ 𝐶𝑆 [𝑃𝐾 ] ⇝𝑚𝐾 ).

Given𝐾 programs (𝑃𝑖 )1≤𝑖≤𝐾 that, when compiled and linked
with the same target context 𝐶𝑇 , produce 𝐾 finite trace pre-
fixes (𝑚𝑖 )1≤𝑖≤𝐾 , we need to build a single source context 𝐶𝑆
that, when linked with the 𝐾 source programs, produces the
same prefixes. Each prefix captures the interaction between
the context and one program (calls and returns), as well as
external I/O or termination events. The RFrXC criterion is
a generalization of RSC to multiple programs and prefixes
and also implies preservation of noninterference and in our
setting also of contextual equivalence (so it implies the in-
teresting preservation direction of full abstraction) [1].
We build upon the secure compilation proof technique

from [2], as it cleanly separates the proof into several steps,
the most important ones being: a back-translation step pro-
ducing a source whole program from a single trace, a “recom-
position” step allowing to split apart and recombine pieces
of low-level programs, and standard compiler correctness to
navigate between languages. To adapt this proof technique
to our stronger RFrXC criterion, we only need to change
the back-translation step. Indeed, this is the only step that
needs to consider all the programs 𝑃𝑖 at once, since we must
construct a single context that will produce the appropriate
prefixes when linked with each of the programs. The other
steps, recomposition and compiler correctness, can simply
be applied pointwise 𝐾 times to obtain the stronger result.

The new back-translation is divided in several small simple
steps, just as a nanopass compiler, and its correctness is
obtained by proving simulations between the intermediate
representations. As a result, we are able to mechanize this
proof in the Coq proof assistant, resulting in several simple
simulation proofs.

Back-translation ofmultiple traces. Given trace prefixes
(𝑚𝑖 )1≤𝑖≤𝐾 our new back-translation generates not only one
source context 𝐶𝑆 , but also several source partial programs(
𝑃 ′
𝑖

)
1≤𝑖≤𝐾 which together with the context produce the given

prefixes. We take inspiration in the back-translation from [2],
which keeps track of one private counter per component
storing the current location in the trace and dictating what
event the back-translated context should emit next. We also
take inspiration in an RFrXC proof from [1], which devised

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Jérémy Thibault and Cătălin Hriţcu

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

a multiple-trace back-translation for purely functional lan-
guages. This time, and as in [2], we allow and rely on state to
store metadata allowing the program to know what part of
the trace it already executed. We describe next, on an exam-
ple, a simplified version of the back-translation generating a
single context that produces the given trace prefixes.

Generating the context. we first observe that the set of
prefixes that we have to back-translate can be represented
as a tree of events. For instance, consider the three prefixes:
𝑚1 = Call 𝐶 𝑃 40; Ret 𝑃 𝐶 41; ⇓
𝑚2 = Call 𝐶 𝑃 40; Ret 𝑃 𝐶 42; ⇑
𝑚3 = Call 𝐶 𝑃 40; Call 𝑃 𝐶 43; Ret 𝐶 𝑃 44; Ret 𝑃 𝐶 41; ⇑

where ⇓ represents termination, ⇑ represents divergence,
Call 𝐶 𝑃 𝑛 represents a call from context to program with
argument 𝑛, and similarly for the other events. We use the
following tree to represent them:

Call 𝐶 𝑃 40 : 1

Ret 𝑃 𝐶 41 : 2

⇓ : 3

Ret 𝑃 𝐶 42 : 4

⇑ : 5

Call 𝑃 𝐶 43 : 6

Ret 𝐶 𝑃 44 : 7

Ret 𝑃 𝐶 41 : 8

⇑ : 9

We give a unique identifier to each node, here in red and
bold, which we call the “location” of the node in the tree. In
the back-translated context, we will allocate a designated
memory cell loc that stores this number, called the location
of the context. During the execution, we maintain the in-
variant that loc always stores the location of the last event
executed. The context uses this information to know which
event to perform next and how to update loc. For instance,
if the current loc is 0 (corresponding to the initial state),
then the tree tells us the context must call the program with
argument 40, and update its own location to 1.

However, the next event is controlled by the program, so
the context does not know yet what location is next: 2, 4, or
6. Hence, when it recovers control, it must determine what
its new location is, based on both the previous location it
still has stored in loc, and whether it gains control by being
called or being returned to.

Suppose for instance that when the context recovers con-
trol, its location is still 1. If it just got returned to, then it
must be either at location 2 or 4, depending on the value
returned, and it can update its location accordingly. Note
that the new location cannot be 8: while this return corre-
sponds to the same call as the one of location 1, the context
must have gotten the control back at least once before this
point (7), and hence it has already updated its location to not

be 1 anymore. This also explains why the context behaves
differently despite being returned the same value (41) both
when going from 2 to 3 and from 8 to 9; in the latter case its
state would not be the same though, having been modified in
7. If instead of a return it receives a call at location 1, then it
has to check the argument of the call and update its location
accordingly: here, the next location will be 6.

To obtain a contextwith this behavior, the back-translation
proceeds in many small steps, like a nanopass compiler [4]:
• It first stores the parent node’s location inside every node.
• It then gathers answers to questions such as “if I’m called
with argument 𝑧 in location 𝑛, what is my new location?”
and “if I’m returned value 𝑧 in location 𝑛, what is my new
location?” by performing tree traversals and storing this
information inside the corresponding nodes.

• It then uses this gathered information to generate for each
tree node several expressions that perform the updates to
the location and that emit the events.

• Finally, the tree is flattened, and all expressions are joined
into a single expression, using nested if-then-else con-
structs to branch on the location of the context.

Generating the programs. We also perform the same
back-translation in order to obtain 𝐾 source programs 𝑃 ′

𝑖 ,
that will be used in the next steps of the RFrXC proof. The
only difference this time is that we obtain 𝑃 ′

𝑖 not by back-
translating the whole set of prefixes anymore, but instead
by applying the previous algorithm on the singleton {𝑚𝑖 }.

Correctness of the back-translation. We prove this back-
translation correct by giving a formal semantics to each
intermediate representation of the prefixes, and using stan-
dard CompCert-style simulations [5] to relate them. In other
words, we see proving that the back-translated context in-
deed produces the prefixes as a compiler correctness prob-
lem, where the compiler is the back-translation, the source
language is the set of prefixes, and the target language is
the high-level language. We believe this structure simplifies
reasoning about the back-translation, as it allows us to rea-
son in small incremental steps instead of in a single, large
transformation relying on complex invariants.
The first language of trees has a very simple small-step

semantics given by the following rule:
Node 𝑒 𝑇 ′ ∈ 𝑇

(𝑇, 𝑒 :: 𝑡) →𝑒 (𝑇 ′, 𝑡)
A state consists of a remaining trace 𝑡 and a list of remaining
subtrees 𝑇 , where Node 𝑒 𝑇 ′ is the tree whose root is the
event 𝑒 and whose children are the trees in the list 𝑇 ′.
At each step of the back-translation, we add more infor-

mation to the trees, and at the same time, we use ghost state
in the semantics to enforce explicitly the invariants of the
execution. For instance, the next step of the back-translation
is to add the location to each node, and the state becomes a
triple that also contains this location that is updated as the

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Nanopass Back-Translation of Multiple Traces for Secure Compilation Proofs Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

execution progress through the tree. This location is updated
so that it always contains the location that will be stored
in the concrete state when executing the back-translated
program in the source semantics. Eventually, in the last sim-
ulation proofs, we prove that this ghost counter is always
equal to the concrete value stored in loc cell when the back-
translated context is executed.

This allows us to progress step-by-step in the proof, only
considering one invariant at a time, and as such considerably
simplifies the mechanization of the proof.

Conclusion, future work. With this work, we aim at pro-
viding a back-translation technique that is general and mod-
ular enough to be reused in different proofs of secure com-
pilation, in a proof assistant like Coq. We are also working
on applying this back-translation technique to the compiler
from [2], and hope it will soon replace the previous proof.

References
[1] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco

Patrignani, and Jérémy Thibault. 2019. Journey Beyond Full Abstraction:
Exploring Robust Property Preservation for Secure Compilation. In 32nd
IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,

USA, June 25-28, 2019. IEEE, 256–271. https://doi.org/10.1109/CSF.2019.
00025

[2] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora
Evans, Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C.
Pierce, Marco Stronati, and Andrew Tolmach. 2018. When Good Compo-
nents Go Bad: Formally Secure Compilation Despite Dynamic Compro-
mise. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang (Eds.). ACM, 1351–1368. https://doi.org/10.1145/3243734.
3243745

[3] Dominique Devriese, Marco Patrignani, Frank Piessens, and Steven
Keuchel. 2017. Modular, Fully-abstract Compilation by Approximate
Back-translation. Log. Methods Comput. Sci. 13, 4 (2017). https://doi.
org/10.23638/LMCS-13(4:2)2017

[4] Andy Keep. 2020. The Nanopass Framework as a Nanopass Compiler
(ELS keynote). In Proceedings of the 13th European Lisp Symposium (ELS
2020), Zurich, Switzerland, April 27-28, 2020, Ioanna Matilde Dimitriou
Henríquez (Ed.). ELSAA.

[5] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom.
Reason. 43, 4 (2009), 363–446. https://doi.org/10.1007/s10817-009-9155-4

[6] Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully abstract
compilation via universal embedding. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii (Eds.). ACM, 103–116. https://doi.org/10.1145/
2951913.2951941

3

https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.23638/LMCS-13(4:2)2017
https://doi.org/10.23638/LMCS-13(4:2)2017
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941

	References

