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Abstract. Information-flow security analysis aims to prevent the leak
of information in a system. Predictive mitigation tackles the issue of
timing leaks in a general setting. We improve upon the performance and
permissiveness of language-based predictive mitigation, a language-based
instantiation of this technique. This work is carried in a setting of a
simple imperative language with asynchronous I/O. More precisely, we
leverage the asynchronous nature of the I/O to propagate mitigating
delays to edges instead of delaying the whole computation.

1 Introduction

Ensuring segregation of private and public data is a key part of computer systems
security. For many applications, such as cryptography, it is necessary that private
information, such as cryptographic keys, or random seeds, can not be disclosed
to an unauthorized observer.

Several techniques that disallow explicit access to private information exist:
access control matrices [13], cryptography.

However, despite their efficiency, these models are not suited to prevent all
information leaks. An observer having access to the public state of a program
could deduce information on private data from this public state. It becomes
apparent that there is a need to ensure no secret information can be retrieved this
way. Information-flow analysis aims to prevent undesirable information flows from
secret context to public context. Such flows can occur in several ways: explicitly
(as in assignments or I/O), or implicitly, which includes covert channels (e.g.
timing channels).

Predictive mitigation [3, 24] is a promising method to ensure no information
flows via timing channels. It acts by delaying the timing of attacker-observable
events.

In particular, language-based predictive mitigation [23] is an instantiation of
this technique to a language-based setting that works by padding the execution
time of secret-dependent sections in a given program.

However, predictive mitigation has the drawback on considerably slowing
down the execution.

This work makes an attempt at solving this issue. We use asynchronous I/O
to propagate the delays to I/O instead of delaying the whole execution. This
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allows us to ignore some unnecessary delays in a multi-level setting. We also
introduce “optimistic” mitigation that allows us to use less accurate predictions
in a number of cases, which improves permissiveness.

2 Preliminaries

2.1 Attacker model

We assume that the attacker has access to the internal working of the system,
typically the source code of the program. The attacker may be the provider of
the program, for instance under the form of a plugin, or a library.

The attacker may observe events that are generated by the execution of the
system. These events may be assignments to public variables or I/O operations
for instance.

2.2 Security lattice

In this work, we try to prevent information flows from secret sources to public
sinks.

We assume the information is classified according to a confidentiality level
(or security level). The security levels form a hierarchy, where higher levels are
more confidential. Moreover, we further restrict ourselves to security levels that
form a lattice, proposed by Denning [7].

L

M1 M2

H

Fig. 1: A security lattice

In this representation, the security levels
are ordered according to a relation v that
reads “flows to”. The “flows to” relation is a
partial order on the set of security levels. For in-
stance, the lattice described by Figure 1 repre-
sents the following relations: L vM1, L vM2,
M1 v H,M2 v H, and by transitivity, L v H.

The lattice representation also assume that
there exists an unique least upper bound of

a set of level. We note t the binary operation that returns the least upper
bound of two levels. In the previous example, we have for instance M1 tM2 = H,
LtM1 =M1 and H tM1 = H.

In the rest of the paper, we will use variables named h, h1, h2, . . . if they are
of level H, m,m1,m2, . . . if they are of level M , etc.

2.3 Information flows

We consider a programming model, where our programs interact with outside
parties over communication channels; the outside parties are also associated with
security levels. For simplicity, we assume there is one channel per level.

The language consists of assignments, conditional branching, loops, and the
send command which sends a value over a particular channel.

We are mainly interested in three kind of flows:
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– The program l := h contains an explicit flow : the secret value of h is assigned
to public variable l

– Figure 2a contains an implicit flow due to the structure of the program: the
value of h is leaked into l, as one can be deduce only from reading the value
of l which branch was taken

– Figure 2b contains an implicit flow due to a timing channel : if the observer
L witnesses a short amount of time between the two messages, then the else
branch had to be taken, hence h = 0; otherwise, h = 1.

if (h) {
l := 1

} else {
l := 0

}

(a) Implicit flow via control flow

send(L, 0)
if (h) {

// Long computation
} else {

skip
}
send(L, 1)

(b) Implicit flow via a timing channel

Fig. 2: Examples of undesirable flows

2.4 Noninterference

The principal concept of language-based information-flow security is the concept
of noninterference. This concept has been introduced by Goguen in [9]. There are
several variants of noninterference; see an overview by Hedin and Sabelfeld [10],
and probabilistic noninterference [20].

Informally, we say that a program satisfies noninterference if given two initial
states that differ only in their secret state (i.e. they are indistinguishable by the
attacker), and two runs of the program starting from these initial states, the final
states of the runs are likewise indistinguishable by the attacker.

2.5 Language-based information flow security

Γ ` n : l

Γ (x) = l

Γ ` x : l

Γ ` e1 : l1 Γ ` e2 : l2

Γ ` e1 ? e2 : l1 t l2

Γ, pc ` skip

Γ ` e : l pc t l v Γ (x)
Γ, pc ` x := e

Γ, pc ` c1 Γ, pc ` c2
Γ, pc ` c1; c2

Γ ` e : l Γ, pc t l ` ci, (i = 1, 2)

Γ, pc ` if e then c1 else c2

Γ ` e : l Γ, pc t l ` c
Γ, pc ` while e do c

Fig. 4: Type system
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e ::= n | x | e1 ? e2
c ::= skip

| x := e

| c1; c2
| if e then c1 else c2

| while e do c

Fig. 3: Language grammar

For an overview of language-based
information security, see the survey by
Sabelfeld and Myers [19].

A first way of ensuring noninterference
is static Denning-style security enforce-
ment[8].

In programming languages implement-
ing these techniques, a preemptive analysis
of the program allows to reject code that
contains explicit or implicit information
flow. This is often done via type systems:
each variable is associated a security type,

that is the level of confidentiality of the variable; the type system ensures that a
typable command can be executed without leaking information.

We consider as a basis for our work the language defined in Figure 3, and we
use the formalization given by [2]. The semantics are given under the form of
Structural Operational Semantics [18]; see Figure 14 in the appendix. The corre-
sponding type system is described in Figure 4, based on the work of Volpano [21].

In this language, the semantics are given by a small-step relation 〈c,m〉 →
〈c′,m′〉 where c is a command, m is a starting memory, m′ is the updated memory
and c′ is the updated command, or stop in the case of a terminal configuration.
The rules for this relation are given Figure 14.

We can define noninterference for such a language, by defining memory
agreement on public variables first:

Definition 1 (Memory agreement on public variables). Given two mem-
ories m1 and m2, they agree on public variables, written m1 ∼ m2, when

∀x, x is public =⇒ m1(x) = m2(x).

Definition 2 (Noninterference). Program c is secure when for all memories
m1 and m2 such that m1 ∼ m2,

〈c,m1〉 →∗ 〈stop,m′1〉 and 〈c,m2〉 →∗ 〈stop,m′2〉

it holds that m′1 ∼ m′2.

This is a form of termination-insensitive definition, as it only consider runs
where the execution terminates.

Noninterference can be ensured via security types. We suppose we have a
security type environment Γ that maps variables to security level. The type
system described in Figure 4 ensures noninterference. Typing rules for expression
are of the form Γ ` e : l, which means expression e has security level l. Typing
rules for commands are of the form Γ, pc ` c where pc is the program-counter
level, that carries information on the security context.

The purpose of the type system is two-fold. First, it ensures the absence of
explicit flows in the form of assignment of high values to low variables. The
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derivation rules ensure that the security context represent by the pc level is
increased when entering a high-guarded section, and decreased upon leaving it.
In such a section, assignments to public variables are then disallowed by the type
system, to ensure the absence of control-flow based information leak.

However, this type system does not account for the timing behavior of the
program. Indeed, a program such as the one described in Figure 2b is accepted
by this type system. However, the measurement of the execution time of the
program allows the attacker to deduce the private secret. Such an attack has
been exhibited for some implementations of RSA [6, 11].

2.6 Predictive mitigation

One promising approach to timing leak is called predictive mitigation [3, 23].
Predictive mitigation tries to ensure observable events do not induce timing leaks
by delaying them.

Language-based mitigation of timing channels [23] is a language-based ap-
proach to limit timing leaks. Timing mitigation is ensured by language construct
that delays observable events.

This technique introduces a new command pad(e) do c. This executes the
command c, then pads the execution so that e ticks are spent exactly in this
section. The execution is stopped if the program spend too much time in it. This
ensures that all possible runs of this command take the same amount of time,
unless they timeout.

The technique has been shown to be a flexible, efficient way of limiting timing
leaks [23, 3].

3 Contribution

Our contribution consists in an improvement to performance and permissiveness
of language-based predictive mitigation.

3.1 Introduction of predictive mitigation

To improve the expressivity of the language described in Section 2.5, one may
want to introduce a send operation that represents sending a message over an
abstract channel, that can be a network channel, disk I/O, message passing
between processes, etc.

To simplify the model, we assume that there exists one unique channel for
each security level; extending the model to handle several channel per security
level is immediate.
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send (L, 0);
pad (50) {

if (h) {
// Long computation

} else {
skip;

}
}
send (L, 1);

Fig. 5: Updated program
with pad command

Timing channels in this augmented version
However, this operation allows the receiver to ob-
serve timing channels, such as the one in Figure 2b.
The observation of the timing of the call to send
allows to deduce the value of a secret.

To ensure noninterference, the classical
language-based technique is the introduction of
a pad command whose role is to ensure that each
the execution of a section while take the same
amount of time, whatever the run.

The updated program is given Figure 5. In a
run of this program, after executing the content of

the padded section, the program will wait an appropriate amount of time.

Issues of classical predictive mitigation This addition to the language raise
several issues.

First, if the execution follows a short path, a lot of CPU time is wasted
waiting if the implementation is using busy waiting. Instead, if we allow another
program to be executed, performances and security may be lost.

Indeed, context switching is not a free operation. Frequent context switch can
severely hinder performance.

Moreover, interleaving of programs can lead to new security issues. Consider
the program described in Figure 6. During a run of this program, if h = 0, then
there is no waiting phase, and no possibility of interleaving another program.
However, if h = 1, then it is possible to execute a program during the waiting
phase that lasts 8 ticks. Then, after these 8 ticks, our program needs to resume
instantly by the scheduler; indeed, if it is not the case, the message will be delayed
and the observer will be able to deduce that another thread was executed. This
means that the program had to wait in this section, hence h = 1.

pad(10) {
if (h) {skip}
else {skip * 9}

}
send(0, L)

Fig. 6

Second, some messages to higher levels will be de-
layed for no reason by the predictive mitigation solution.
Figure 7 is an example of such a case: suppose there is
three security levels L vM v H. Then, the observer H
has the right to access the value of variable m. However,
predictive mitigation will still delay the execution of
the send(0, H) command even if it is not needed.

3.2 Optimized predictive mitigation

We propose a solution that solve these issues, but which requires asynchronicity
of communication.

Model assumptions In our model, the attacker does not have access to the
internal state of the program. Therefore, “pure” (in the sense that they do not
contain communication commands) computations can not be observed by the
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attacker; the only observation the attacker can make are those of messages they
can receive. Then, it makes sens to only delay the timing of sent messages instead
of the whole computation.

if (m) {
// Long computation

} else {
skip

}
send (0, H)
send (0, L)

Fig. 7

To handle this task, we suppose that there exists
a runtime mechanism that acts as a buffer where
message to be sent are placed, and send them at a
later time.

Expected timing behavior Figure 8 represents
the abstract utilization of a CPU during the execution
of a program.When the processor is executing an
instruction, the line is plain and when the processor
has nothing to execute, it is dashed.

The first line describes the network communica-
tion thread, that must always be active in order to send messages at the right
time.

The other two lines represent the utilization of the processor during the
execution of the same program in both classical and optimized mitigation. Arrows
represent the addition of messages to the message pool, and points from the time
at which the send command is encountered to the time at which the message
must be sent.

The time during which the processor is active is the same; however, the
execution of the optimized version is not interrupted.

Classical mitigation

(0, L) (1, L)

(0, L) (1, L)

Network messages

Optimized mitigation

Fig. 8: Timing

3.3 Formalization

We consider the simple imperative language described in Section 2.5, augmented
with operation allowing communication with external source, and a padding
instruction used for predictive mitigation. The grammar of this language is given
Figure 9.

The commands pad and padr are used for predictive mitigation: the first
command is a source-level command, while the second is a runtime-only represen-
tation allowing to store information in case of nested paddings. The parameters
of the first command are an expression e representing the allowed time for the
execution, and a level l that describes the security level of the commands executed
inside the padded section. The meaning of the runtime padding command is
detailled later.
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c ::= . . .

| send(l, e)
| x← recv(e, l)

| pad(e, l) do c
| padr(n0, l, p, n1, n2) do c

Fig. 9: Updated language

Representation of time We consider an ab-
stract time represented by integers. Each in-
struction is executed in exactly one tick, with
the exception of the recv instruction.

Representation of messages A program
can send and receive information to/from a
channel. Such information is described by a
triplet (v, l, t) where v is the information being
sent, l is the security level representing the
channel, and t is the time at which the message
was received or sent.

The messages that are received on a channel are determined by the previous
history of messages sent and received on this channel, that is we suppose there
exists a function sl for each channel l that takes an history of messages (r, l) as
an input and returns a value v.

Small-step relation The semantics are given by the small-step relation

〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉

where 〈c,m, t, s, r, p〉 and 〈c′,m′, t′, s′, r′, p′〉 are configurations, that is a tuple
〈c,m, t, s, r, p〉 where:

– m is a memory: map from the variable names to R.
– t is the current time (t ∈ N)
– s is the set of sent messages, as described in the previous section. We do not

require that if (v, l, t′) ∈ s, then t′ ≤ t: a message that does not satisfy this is
a message that will be sent in the future, as soon as the given time is reached

– r is the set of received messages
– p is a map of padding delays: map from the security levels to N which stores

delay information regarding predictive mitigation. These delays correspond
to the time that must be waited at the end of a padded section in classical
predictive mitigation. These delays must be negative, which means the
program is running late.

The updated rules for the basic language (without communication or predictive
mitigation) are given in appendix Figure 15. The stop, sequential composition,
assignment, conditions, and loops are the same as in a classical imperative
language.

Communication and predictive mitigation semantics We introduce the
element p from the configuration, that stores the time left at the end of padded
sections, as well as the commands pad(e, l) do c and padr(v, l, p0, v0, t0) do c.

The semantics of communication operations are given Figure 10a, and the
semantics of mitigation are given Figure 10b.
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〈m, e〉 ⇓ v p(l) = t′ s′ = {(l, v, t+ t′)} ∪ s p(l) ≥ 0

〈send(l, e),m, t, s, r, p〉 → 〈stop,m, t+ 1, s′, r, p〉

s′ = {(l′, v′, t′) ∈ s, l′ = l} r′ = {(l′, v′, t′) ∈ r, l′ = l}

sl(s
′, r′) = v p(l) ≥ 0 p′ = l′ 7→

{
0 if l v l′

p(l′)− p(l) otherwise

〈x← recv(l),m, t, s, r, p〉 → 〈stop,m[x← v], t+ p(l) + 1, s, {(l, v, t+ p(l))} ∪ r, p′〉

s′ = {(l′, v′, t′) ∈ s, l′ = l}
r′ = {(l′, v′, t′) ∈ r, l′ = l} sl(s

′, r′) = v p(l) < 0

〈x← recv(l),m, t, s, r, p〉 → 〈stop,m[x← v], t+ p(l) + 1, s, {(l, v, t+ p(l))} ∪ r, p〉

(a) Semantics of communication operations

〈m, e〉 ⇓ v
〈pad(e, l) do c,m, t, s, r, p〉 → 〈padr(v, l, p, v, t+ 1) do c,m, t+ 1, s, r, p〉

∆t = t′ − t v −∆t ≥ 0 c′ 6= stop 〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉
〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 → 〈padr(v −∆t, l, p0, v0, t0) do c′,m′, t′, s, r′, p′〉

∆t = t′ − t v −∆t ≥ 0 〈c,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′〉

p′′ = l′ 7→

{
p0(l

′) + v0 − (t′ − t0) if l 6v l′

p′(l′) otherwise

〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′′〉

(b) Semantics of predictive mitigation

Fig. 10: Semantics of communication and predictive mitigation

These commands raise the security level to at least l, and executes the
command c in this context.

We use a runtime-level padr command to ensure nested paddings are correctly
handled. When entering a padded section via the command pad, the time the
execution is allowed to spend in the section v0, the current time t0 and the
current padding structure p0 are stored in the runtime command. They are
constant during the execution of the padded section. At the end of the padded
section, these informations are used to construct the new padding structure in
the following manner:

– if the section’s level flows to another level, then this level must not be delayed
further.

– otherwise, the value from p0 is restored, and increased by the time differential.

When sending a message via the command send(e, l), the expression is evalu-
ated immediately and the message is to be sent at later time t+ p(l), which is
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exactly the time at which the message would have been sent had the execution
waited at the end of the previous padded sections.

The reception of message from l is synchronous, as it waits for all message to
l to be sent (that is it waits for p(l) ticks), and then receive the message. The
advantage of this is that it allows easier synchronization mechanism. Since the
reception waits, we can decrease the values stored in p.

“Optimistic” mitigation Our semantics allow p(l) to be negative. Since the
only observable events are the messages, we allow the execution to continue even
if it exceeds the time limit of a padding, and as long as no send operation is
encountered. Then, the program can catch up on the delay when encountering
another padded section.

If a send instruction is encountered while p(l) is negative, this means that,
to ensure timing security, one would have had to send the message before the
instruction is encountered. Hence, we chose to stop the execution at this point;
however, a particular implementation could allow sending the message late,
allowing some information to be leaked.

We call this “optimistic” mitigation, as it allows more lax timing prediction:
one could, via an appropriate mechanism, adapt dynamically the duration of a
padded section that is found inside a loop.

Type system To ensure noninterference, we use the type system described in
Figure 11.

Γ, pc ` skip

Γ ` e : l pc t l v Γ (x)
Γ, pc ` x := e

Γ, pc ` c1 Γ, pc ` c2
Γ, pc ` c1; c2

Γ ` e : l l v pc Γ, pc ` ci, (i = 1, 2)

Γ, pc ` if e then c1 else c2

Γ ` e : l l v pc Γ, pc ` c
Γ, pc ` while e do c

Γ ` e : l′ pc t l′ v l
Γ, pc ` send(e, l)

pc t l v Γ (x) pc v l Γ ` e : l′ l′ v pc
Γ, pc ` x← recv(e, l)

Γ ` e : l′ l′ v pc Γ, pc t l ` c
Γ, pc ` pad(e, l) do c

Γ, pc ` pad(v, l) do c

Γ, pc ` padr(v, l, p0, v0, t0) do c

Fig. 11: Type system for optimized mitigation

This type system is similar to the classical type system described previously.
The differences mostly lie in two points:

– Sending and receiving a message can be seen as slightly more complex
assignments.

– Instead of the commands if and while raising the security context, it is now
the padding command that raise pc.
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Noninterference We prove a form of noninterference. In two different runs
starting from initial configurations that are indistinguishable for an attacker ladv,
if both runs end, then the two final configuration are indistinguishable for the
same attacker ladv.

Definition 3 (Memory agreement at security level l). Let l ∈ L be a
security level. Two memories m1 and m2 agree at security level l, denoted
m1 ∼l m2, when:

∀l′ v l,∀x, Γ (x) = l′ =⇒ m1(x) = m2(x)

Definition 4 (Message agreement at security level l). Let l ∈ L be a
security level. Two sets of messages agree at security level l, denoted s1 ∼l s2,
when:

∀l′ v l,∀v,∀t, (v, l′, t) ∈ s1 ⇐⇒ (v, l′, t) ∈ s2
This definition holds for both received and sent messages.

Definition 5 (Equivalence of commands). Let ladv be a security level.
c1 ∼ladv c2 if and only if at least one of those is true:

– c1 = c2
– c1 = d1; d

′
1, c2 = d2; d

′
2, d1 ∼ladv d2, and d′1 = d′2

– c1 = padr(v, l, p1, v1, t1) do d1, c2 = padr(v, l, p2, v2, t2) do d2, d1 ∼ladv d2,
and for all l′ v ladv, p1(l) + t1 + v1 = p2(l) + t2 + v2

Definition 6 (Equivalence of configuration at level ladv).
Let ladv be a security level. Two configurations are equivalent at level ladv,

denoted:
〈c1,m1, t1, s1, r1, p1〉 ∼ladv 〈c2,m2, t2, s2, r2, p2〉

when

1. c1 ∼ladv c2
2. m1 ∼ladv m2

3. s1 ∼ladv s2
4. r1 ∼ladv r2
5. for all l v ladv, p1(l) + t1 = p2(l) + t2

Theorem 1 (Noninterference). Let c be such that Γ, pc ` c. Then for all
〈c,m1, t1, s1, r1, p1〉 ∼ladv 〈c,m2, t2, s2, r2, p2〉 such that:

〈c,m1, t1, s1, r1, p1〉 →n1 〈stop,m′1, t′1, s′1, r′1, p′1〉

and
〈c,m2, t2, s2, r2, p2〉 →n2 〈stop,m′2, t′2, s′2, r′2, p′2〉

it holds that:

〈stop,m′1, t′1, s′1, r′1, p′1〉 ∼ladv 〈stop,m′2, t′2, s′2, r′2, p′2〉

This is a slightly weaker version of the previous noninterference definition,
where the observable events are the message that are sent at all level below of
equal to ladv.
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4 Evaluation

We implemented both classical predictive mitigation and our improvement for
this simple language in OCaml.

The implementation abstracts away the communication system.
To improve our capacity to analyze this work, our implementation supports

two kind of time model:

– First, the abstract time extracted from the semantics of the language.
– Then, a real-time model where time roughly corresponds to real execution

times of the instructions.

We measured the timing of messages and the duration of the execution of
two programs: the square-and-multiply modular exponentiation described in [14]
and that is used in RSA, and a login system [5]. These programs are given in
Figure 16 and Figure 17 (appendix).

As expected, the messages are sent at the same time in both version. Results
(averaged over 1000 executions) regarding the execution time are given Figure 12,
in milliseconds.

Classical mitigation Optimized mitigation Improvement
Modular exponentiation 1.80 0.28 6.4×

Login 0.23 0.19 1.2×

Fig. 12: Execution time

This results are in line with our expectations. In particular, the modular
exponentiation consists in a padded section inside a loop. The classical mitigation
forces to wait each time the loop is entered, while the optimized do not, which
explains these results.

We also evaluated the performances of a program that compute share values [1],
for array size ranging from 1 to 200, averaged over 200 executions. The code is
given Figure 18, and the results are given Figure 13

Fig. 13: Average duration of a run of the ShareValue program

As expected, the optimized version is faster than the classical version. In both
version, the message are again sent at the same time.
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Moreover, after a certain size, we notice that some padded sections begin to
timeout. This cause the classical mitigation version to stop the execution, but is
not an issue in the optimized version, as on average the timeout is not reached.

Further work This work can be extended in several manners.

– Provide a more realistic implementation of this work, including the runtime
mechanism of semi-asynchronous model of I/O. This may turn out to be a
difficult task, as it requires a fine management of time. This is an important
step to provide usability.

– Extend the model to allow parallelism. Observational determinism [22] pro-
vides a security property for a parallel functional language. This language
could be extended with predictive mitigation techniques.

5 Related work

This section discusses several solutions to information-flow security and in partic-
ular to timing channels from the literature, and compare them to our work.

Code transformation Code transformation eliminates some of the timing
channels, by using techniques such as cross-copying [1] which pads branches with
dummy statements, unification [12] which improves the previous technique by
only inserting statements if they are needed, conditional assignment [15] which
performs both computations, the result being encoded with bit masks and bitwise
operations, and transactional branching [4], which wraps branches in transactions
and commit only one of them, the other being aborted.

A study of their performance [14] shows that these transformations can
significantly decrease the performance of programs. Contrary to our approach,
these code transformations decrease the expressiveness of the language, as they
disallow loops with secret guards.

Secure multi-execution Secure multi-execution consists in executing the pro-
gram several times, once for every security level. Only outputs from their security
level are kept, and inputs are replaced by default inputs in execution that is
below their security level.

However, performance is affected by the need of multiple executions, especially
in cases with a very high number of security levels.

Decentralized label model The Decrentalized Label Model [16] is a flexible
model that allows the weakening of security policies by the owner of the informa-
tion. This model is put to use in the language Jif [17], an extension to Java that
provides static information-flow analysis.
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6 Conclusion

Language-based predictive mitigation is an effective method to limit information-
flow leaks. This method consists in delaying the execution of the program so that
every run take the same time.

We proposed an optimization of this method, that leverages asynchronous I/O
to move the delays from the computation to the inputs and outputs. More precisely,
instead of delaying the whole execution of a program, only I/O operations are
delayed.

We showed that a type system soundely prevents timing channels in this con-
text. We also implemented this technique and showed that in several applications,
its performance are indeed better.
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Appendix

6.1 Simple imperative language

E-Const

〈m,n〉 ⇓ n

E-Var

〈m,x〉 ⇓ m[x]

E-Op
〈m, e1〉 ⇓ n1 〈m, e2〉 ⇓ n2

〈m, e1 ? e2〉 ⇓ n1 ? n2

(a) Semantics of expressions

S-Skip

〈skip,m〉 → 〈stop,m〉

S-Assign
〈m, e〉 ⇓ v

〈x := e,m〉 → 〈skip,m[x← v]〉

S-Seq1
〈c1,m〉 → 〈stop,m′〉
〈c1; c2,m〉 → 〈c2,m′〉

S-Seq2
〈c1,m, 〉 → 〈c′1,m′〉 c′1 6= stop

〈c1; c2,m, 〉 → 〈c′1; c2,m′〉

S-If
〈m, e〉 ⇓ v v 6= 0 =⇒ i = 1 v = 0 =⇒ i = 2

〈if e then c1 else c2,m〉 → 〈ci,m〉

S-While-Cont
〈m, e〉 ⇓ v v 6= 0

〈while e do c,m〉 → 〈c; while e do c,m〉

S-While-Break
〈m, e〉 ⇓ v v = 0

〈while e do c,m〉 → 〈stop,m〉

(b) Semantics of commands

Fig. 14: Semantics for a simple imperative language
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6.2 Optimized mitigation

〈skip,m, t, s, r, p〉 → 〈stop,m, t+ 1, s, r, p〉

〈m, e〉 ⇓ v
〈x := e,m, t, s, r, p〉 → 〈skip,m[x← v], t+ 1, s, r, p〉

〈c1,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′〉
〈c1; c2,m, t, s, r, p〉 → 〈c2,m′, t′, s′, r′, p′〉

〈c1,m, t, s, r, p〉 → 〈c′1,m′, t′, s′, r′, p′〉 c′1 6= stop

〈c1; c2,m, t, s, r, p〉 → 〈c′1; c2,m′, t′, s′, r′, p′〉

〈m, e〉 ⇓ v v 6= 0 =⇒ i = 1 v = 0 =⇒ i = 2

〈if e then c1 else c2,m, t, s, r, p〉 → 〈ci,m, t+ 1, s, r, p〉

〈m, e〉 ⇓ v v 6= 0

〈while e do c,m, t, s, r, p〉 → 〈c; while e do c,m, t+ 1, s, r, p〉

〈m, e〉 ⇓ v v = 0

〈while e do c,m, t, s, r, p〉 → 〈stop,m, t+ 1, s, r, p〉

Fig. 15: Updated operational semantics for the base language without communi-
cation or predictive mitigation

6.3 Programs

The following programs are given in the syntax used by our implementation. In
particular, the implementation does not allow if without an else branch, which
explains why a skip is added to each of these branches. The operator @ performs
declassification, that is an expression @e is always public. Private variables begin
by h, the other variables are public.

In the Square-and-multiply modular exponentiation Figure 16, informations
about the private key hk can be leaked by the timing behavior of the program.

In the login system Figure 17, an attacker can learn if the entered username
exists in the database, because the comparison of the hash of the stored password
and of the provided password takes time, here represented by 5 skip. For
the experiments, we used the same predefined sequence of input values in all
executions.

In the program ShareValue, Figure 18, the variable s represents the size of
the array.
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h_k := 65535;
n := 573;

y := 74;
h_r := 1;

i := 0;
while (i - 32) {

pad (0.00005, H) {
if ((h_k % 2) = 1) {

h_r := (h_r * y) % n; skip;
} else {

skip;
}

}
y := (y * y) % n;
h_k := h_k / 2;
i := i + 1;

}
h_res := h_r % n;

send(L, @h_res);

Fig. 16: Square-and-multiply modular exponentiation
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h_username := 3;
h_pass := 5;

keep_looping := 1;
while (keep_looping) {

u <- L;
p <- L;

pad (0.00003, H) {
if (u = h_username) {

skip; skip; skip; skip; skip;
if (p = h_pass) {

h_login := 1;
} else {

h_login := 0;
}

} else {
h_login := 0;

}
}

send (L, @h_login);

if (u = 5) {
keep_looping := 0;

} else {
skip;

}
}

Fig. 17: Login system
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s := 50

while (s - i) {
h_id[i] <- H;
h_id[i] := h_id[i] % 32;
h_qty[i] <- H;
h_qty[i] := h_id[i] % 32;
i := i + 1;

}

h_shareVal := 0;
i := 0;

while (s - i) {
pad(0.0007, H) {

if (h_id[i] = h_special_share) {
h_shareVal := h_shareVal + (val * h_qty[i]); skip;

} else { skip; }
}
i := i + 1;

}

send(H, h_shareVal);

Fig. 18: ShareValue program
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